Genome and Phenotype Microarray Analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7: Genetic Determinants and Metabolic Abilities with Environmental Relevance

نویسندگان

  • Alessandro Orro
  • Martina Cappelletti
  • Pasqualina D’Ursi
  • Luciano Milanesi
  • Alessandra Di Canito
  • Jessica Zampolli
  • Elena Collina
  • Francesca Decorosi
  • Carlo Viti
  • Stefano Fedi
  • Alessandro Presentato
  • Davide Zannoni
  • Patrizia Di Gennaro
  • Marie-Joelle Virolle
چکیده

In this paper comparative genome and phenotype microarray analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7 were performed. Rhodococcus sp. BCP1 was selected for its ability to grow on short-chain n-alkanes and R. opacus R7 was isolated for its ability to grow on naphthalene and on o-xylene. Results of genome comparison, including BCP1, R7, along with other Rhodococcus reference strains, showed that at least 30% of the genome of each strain presented unique sequences and only 50% of the predicted proteome was shared. To associate genomic features with metabolic capabilities of BCP1 and R7 strains, hundreds of different growth conditions were tested through Phenotype Microarray, by using Biolog plates and plates manually prepared with additional xenobiotic compounds. Around one-third of the surveyed carbon sources was utilized by both strains although R7 generally showed higher metabolic activity values compared to BCP1. Moreover, R7 showed broader range of nitrogen and sulphur sources. Phenotype Microarray data were combined with genomic analysis to genetically support the metabolic features of the two strains. The genome analysis allowed to identify some gene clusters involved in the metabolism of the main tested xenobiotic compounds. Results show that R7 contains multiple genes for the degradation of a large set of aromatic and PAHs compounds, while a lower variability in terms of genes predicted to be involved in aromatic degradation was found in BCP1. This genetic feature can be related to the strong genetic pressure exerted by the two different environment from which the two strains were isolated. According to this, in the BCP1 genome the smo gene cluster involved in the short-chain n-alkanes degradation, is included in one of the unique regions and it is not conserved in the Rhodococcus strains compared in this work. Data obtained underline the great potential of these two Rhodococcus spp. strains for biodegradation and environmental decontamination processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome Sequence of Rhodococcus opacus Strain R7, a Biodegrader of Mono- and Polycyclic Aromatic Hydrocarbons

Rhodococcus opacus strain R7 (CIP107348) degrades several mono- and polycyclic aromatic hydrocarbons. Here, we present the high-quality draft genome sequence of strain R7, consisting of 10,118,052 bp, with a G+C content of 67.0%, 9,602 protein-coding genes, and 62 RNAs genes.

متن کامل

Genome Sequence of Rhodococcus sp. Strain BCP1, a Biodegrader of Alkanes and Chlorinated Compounds

Rhodococcus sp. strain BCP1 cometabolizes chlorinated compounds and mineralizes a broad range of alkanes, as it is highly tolerant to them. The high-quality draft genome sequence of Rhodococcus sp. strain BCP1, consisting of 6,231,823 bp, with a G+C content of 70.4%, 5,902 protein-coding genes, and 58 RNA genes, is presented here.

متن کامل

Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes

Rhodococcus sp. strain BCP1 was initially isolated for its ability to grow on gaseous n-alkanes, which act as inducers for the co-metabolic degradation of low-chlorinated compounds. Here, both molecular and metabolic features of BCP1 cells grown on gaseous and short-chain n-alkanes (up to n-heptane) were examined in detail. We show that propane metabolism generated terminal and sub-terminal oxi...

متن کامل

Draft Genome Sequence of Rhodococcus opacus Strain M213 Shows a Diverse Catabolic Potential

Soil-borne Gram-positive bacteria from the genus Rhodococcus metabolize a range of aromatic hydrocarbons and also produce a variety of value-added products, such as triacylglycerols and steroids. We report the draft genome sequence of Rhodococcus opacus strain M213 (9,193,504 bp with a G+C content of 66.99%), providing a comprehensive understanding of the repertoire of metabolic genes of this s...

متن کامل

Comparative and Functional Genomics of Rhodococcus opacus PD630 for Biofuels Development

The Actinomycetales bacteria Rhodococcus opacus PD630 and Rhodococcus jostii RHA1 bioconvert a diverse range of organic substrates through lipid biosynthesis into large quantities of energy-rich triacylglycerols (TAGs). To describe the genetic basis of the Rhodococcus oleaginous metabolism, we sequenced and performed comparative analysis of the 9.27 Mb R. opacus PD630 genome. Metabolic-reconstr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015